Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. An asymptotic expansion of a Lambert series associated to cusp forms
 
  • Details

An asymptotic expansion of a Lambert series associated to cusp forms

Source
International Journal of Number Theory
ISSN
17930421
Date Issued
2018-02-01
Author(s)
Chakraborty, Kalyan
Juyal, Abhishek
Kumar, Shiv Datt
Maji, Bibekananda
DOI
10.1142/S1793042118500173
Volume
14
Issue
1
Abstract
Zagier's conjecture on the asymptotic expansion of the Lambert series Σn=1∞∞2(n)exp(-nz), where ∞(n) is the Ramanujan's tau function, was proved by Hafner and Stopple. Recently, Chakraborty, Kanemitsu and Maji have extended this result to any cusp forms over the full modular group. The goal of this paper is to extend the asymptotic behavior to cusp forms over any congruence subgroup of the full modular group.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/22324
Subjects
Asymptotic expansion | cusp form | Rankin-Selberg L -function | symmetric square L -function
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify