Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Computer Science and Engineering
  4. CSE Publications
  5. Constraining the 3HDM parameter space using active learning
 
  • Details

Constraining the 3HDM parameter space using active learning

Source
Physical Review D
Date Issued
2025-07-01
Author(s)
Batra, Nipun
Coleppa, Baradhwaj
Khanna, Akshat
Rai, Santosh Kumar
Sarkar, Agnivo
DOI
10.1103/t5df-67wh
Volume
vol. 112
Issue
no. 01
Abstract
One of the standard ways to study scenarios beyond the Standard Model involves extending the Higgs sector. This work examines the three Higgs doublet model (3HDM) in a type-Z or democratic setup, where each Higgs doublet couples exclusively to a specific type of fermion. The particle spectrum of the 3HDM includes four charged Higgs bosons, two 𝐶⁢𝑃-odd scalars, and three 𝐶⁢𝑃-even scalars. This work investigates the allowed mass and coupling parameter space in the type-Z 3HDM after imposing all theoretical and experimental constraints. We extract the allowed parameter space under three distinct alignment-limit conditions or mass hierarchies leveraging machine learning techniques. Specifically, we analyze scenarios where the 125 GeV Higgs is the lightest, an intermediary, or the heaviest 𝐶⁢𝑃-even Higgs boson. Our findings indicate that while a single lighter 𝐶⁢𝑃-even Higgs boson below 125 GeV still remains a possibility, the presence of two lighter Higgses is ruled out.
Publication link
https://doi.org/10.1103/t5df-67wh
Sherpa Url
https://v2.sherpa.ac.uk/id/publication/32264
URI
http://repository.iitgn.ac.in/handle/IITG2025/30274
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify