Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Physics
  4. PHY Publications
  5. CTA 102 in exceptionally high state during 2016-2017
 
  • Details

CTA 102 in exceptionally high state during 2016-2017

Source
Astronomy and Astrophysics
ISSN
00046361
Date Issued
2018-09-01
Author(s)
Kaur, Navpreet
Baliyan, Kiran S.
DOI
10.1051/0004-6361/201731953
Volume
617
Abstract
Blazars in outburst provide a unique opportunity to study their spectral behavior, correlated variations at different frequencies, and jet structure. An unprecedented flaring activity in FSRQ CTA 102, occuring from 2016 November to 2017 January, is used here for a detailed study to understand flaring mechanisms at short and long timescales, spectral behavior in different energy regimes, and to estimate sizes and location of the high-energy emitting region in the jet. Multiwavelength (MW) data for CTA 102 during its outburst period, were obtained from Fermi-LAT, Swift-XRT/UVOT, Steward Observatory, Mt Abu Infrared Observatory, and OVRO. These were analyzed to construct MW light curves, extract the spectral information, and to perform the correlated variability studies. Our study shows that CTA 102 attained the highest ever flux levels across the electromagnetic spectrum (EMS) while flaring and otherwise, with rapid and prolonged activities at all the frequencies. A number of short-term (three to eight days) and long-term (more than a month) variability events are noticed across the EMS. We infer a redder when brighter trend in faint state and a bluer when brighter trend during a few optical flares. Based on the flux doubling timescale, the size of γ-ray emitting region is estimated as 8.76 × 10<sup>15</sup> cm, located at a distance of about 5.58 × 10<sup>16</sup> cm from the central engine. CTA 102 was in extremely bright phase during 2016-2017, possibly due to, successive high energy particle injections into the jet, creating shocks traveling down the jet which lead to the overall flux enhancement across the EMS. Alternatively, a decreasing viewing angle could also lead to such flux enhancement. The study reveals correlated variations in all the energy bands, with lags within time bins, indicating co-spatial origin of the emissions. During the flaring event, a bluer-when-brighter color in the optical and harder when brighter trend in the X-ray and γ-ray spectra are noticed. During some flares softer γ-ray spectra are observed.
Publication link
https://www.aanda.org/articles/aa/pdf/2018/09/aa31953-17.pdf
URI
http://repository.iitgn.ac.in/handle/IITG2025/22778
Subjects
Galaxies: active | Galaxies: jets | Gamma rays: galaxies | Methods: observational | Radiation mechanisms: non-thermal | Techniques: photometric
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify