Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Spontaneous translation of nanodroplet over a heterogeneous surface due to thermal cycles: role of solid–liquid interfacial fluctuations
 
  • Details

Spontaneous translation of nanodroplet over a heterogeneous surface due to thermal cycles: role of solid–liquid interfacial fluctuations

Source
Molecular Physics
ISSN
00268976
Date Issued
2020-04-02
Author(s)
Saxena, Utkarsh
Chouksey, Shubham
Rane, Kaustubh  
DOI
10.1080/00268976.2019.1657191
Volume
118
Issue
7
Abstract
We study the molecular-scale features of the solid surface that result in the spontaneous motion of a nanodroplet due to the periodic variation of temperature. We first employ a thermodynamic model to predict the variation of solid–fluid interfacial properties that can result in the above motion. The model identifies a composite (surface couple) made of two surfaces that are characterised by a large difference between the entropic parts of the solid–liquid interfacial free energies. In order to understand the molecular-scale features of the two surfaces that may form a surface couple, we performed grand canonical Monte Carlo simulations of Lennard Jones fluid and crystalline surfaces made of Lennard Jones-like atoms. We then used the cumulant expansions of the perturbation formulas to divide the interfacial entropy into two parts: The one that is directly affected by the solid–fluid attraction (direct part), and the other (indirect part) that is indirectly affected by the solid–fluid attraction via the alteration of interfacial fluctuations. Our results indicate that two surfaces form a surface couple if the differences between their chemical natures lead to large differences in the indirect part of the interfacial entropy, while the direct part remains relatively unaffected.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/23070
Subjects
interfacial fluctuations | Solid–liquid interface | thermodynamic cycle
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify