Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Phosphonium Cation-Based Ferroelectric 1D Halide Perovskite-Like Semiconductor for Mechanical Energy Harvesting
 
  • Details

Phosphonium Cation-Based Ferroelectric 1D Halide Perovskite-Like Semiconductor for Mechanical Energy Harvesting

Source
Chemistry of Materials
ISSN
08974756
Date Issued
2024-11-26
Author(s)
Pradhan, Prabhanjan
Kumar, Prabhat
Bandaru, Ravi Kumar
Dandela, Rambabu
Banerjee, Rupak  
Patra, Biplab K.
DOI
10.1021/acs.chemmater.4c01446
Volume
36
Issue
22
Abstract
Organic-inorganic halide perovskites (OIHPs) have attracted tremendous attention from researchers because of their diverse applications in optoelectronics, sensing, catalysis, memory, photodetectors, and medical diagnostics. The presence of inherent ferroelectricity in these perovskite materials facilitates the separation of photogenerated electron-hole pairs. Here, we report a large phosphonium cation-based methyl triphenyl phosphonium lead bromide (MTPLB) perovskite-like semiconductor with a direct band gap of 3.49 eV, which shows ferroelectricity in both nanoscale and bulk at room temperature. The material exhibits a phase transition temperature of 477 K, a polarization saturation of 0.26 μC/cm<sup>2</sup>, and a d<inf>33</inf> of 5.2 pC/N. MTPLB displays a robust piezoelectric response, as confirmed via advanced piezoresponse force microscopy (PFM). Further, we have fabricated nanogenerator devices with varying ratios of MTPLB and poly(vinylidene fluoride) (PVDF) composites for mechanical and biomechanical energy harvesting. We report an enhanced piezoresponse in all devices with the best response in the device with a 2% MTPLB loading in the PVDF matrix due to the triggering of the electroactive phases in PVDF. The improved output response, operational durability, and flexibility of the composite-based devices underscore their potential for advanced technological applications in electronics, actuators, sensors, and mechanical energy-harvesting processes.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/28651
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify