Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Mathematics
  4. MATH Publications
  5. A quasilinear chemotaxis-haptotaxis system: Existence and blow-up results
 
  • Details

A quasilinear chemotaxis-haptotaxis system: Existence and blow-up results

Source
Journal of Differential Equations
ISSN
00220396
Date Issued
2024-09-05
Author(s)
Rani, Poonam
Tyagi, Jagmohan  
DOI
10.1016/j.jde.2024.04.034
Volume
402
Abstract
We consider the following chemotaxis-haptotaxis system: {u<inf>t</inf>=∇⋅(D(u)∇u)−χ∇⋅(S(u)∇v)−ξ∇⋅(u∇w),x∈Ω, t>0,v<inf>t</inf>=Δv−v+u,x∈Ω, t>0,w<inf>t</inf>=−vw,x∈Ω, t>0, under homogeneous Neumann boundary conditions in a bounded domain Ω⊂R<sup>n</sup>,n≥3 with smooth boundary. It is proved that for [Formula presented]≤A(s+1)<sup>α</sup> for α<[Formula presented] and under suitable growth conditions on D, there exists a uniform-in-time bounded classical solution. Also, we prove that for radial domains, when the opposite inequality holds, the corresponding solutions blow-up in finite or infinite-time. We also provide the global-in-time existence and boundedness of solutions to the above system with small initial data when D(s)=1,S(s)=s.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/28745
Subjects
Blow-up phenomena | Chemotaxis | Global existence and boundedness | Haptotaxis | Parabolic systems
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify