Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Chemical Engineering
  4. CHE Publications
  5. Rational Design of Novel Biomimetic Sequence-Defined Polymers for Mineralization Applications
 
  • Details

Rational Design of Novel Biomimetic Sequence-Defined Polymers for Mineralization Applications

Source
Chemistry of Materials
ISSN
08974756
Date Issued
2024-01-23
Author(s)
Torkelson, Kaylyn
Naser, Nada Y.
Qi, Xin
Li, Zhiliang
Yang, Wenchao
Pushpavanam, Karthik  
Chen, Chun Long
Baneyx, Fran�ois
Pfaendtner, Jim
DOI
10.1021/acs.chemmater.3c02216
Volume
36
Issue
2
Abstract
Silica biomineralization is a naturally occurring process, wherein organisms use proteins and other biological structures to direct the formation of complex, hierarchical nanostructures. Discovery and characterization of such proteins and their underlying mechanisms spurred significant efforts to identify routes for biomimetic mineralization that reproduce the exquisite shapes and size selectivities found in nature. A common strategy has been the use of short peptide sequences with chemistry mimicking those found in natural systems, such as the use of the silaffin-derived R5 peptide. While progress has been made using this approach, there are many limitations that have prevented breakthroughs in biomimicry. To advance our ability to use charged macromolecules for silica formation, we propose to use sequence-defined synthetic polymers known as peptoids, or N-substituted polyglycines, which present significant capability for the precise tuning of sequence and structure beyond what can often be achieved with peptides alone. This study presents a computationally predicted design of these polymers that leads to the controlled formation of silica nanomaterials. We investigate surface adsorption and the mineralization process through analysis of binding mechanisms and energetics of the R5 system. Next, we synthesized two R5-inspired peptoids and validated our prediction in the design of mineralization polymers through characterization using surface plasmon resonance and electron microscopy. This computationally guided study holds great promise for designing new sequences with unprecedented control of the placement of chemical functional groups, thus allowing for further unraveling of silicification mechanisms and the eventual design of sequence-defined synthetic polymers leading to the predictive synthesis of nanostructured functional materials.
Publication link
https://www.osti.gov/biblio/2290446
URI
http://repository.iitgn.ac.in/handle/IITG2025/29058
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify