Choudhury, Projesh NathProjesh NathChoudhuryPanigrahy, KrushnachandraKrushnachandraPanigrahy2025-11-262025-11-262026-02-1510.1016/j.laa.2025.11.0072-s2.0-105021483632http://repository.iitgn.ac.in/handle/IITG2025/33514Let S={s<inf>1</inf>,s<inf>2</inf>,…,s<inf>n</inf>} be an ordered set of n distinct positive integers. The mth-order n-dimensional tensor T<inf>[S]</inf>=(t<inf>i<inf>1</inf>i<inf>2</inf>…i<inf>m</inf></inf>), where t<inf>i<inf>1</inf>i<inf>2</inf>…i<inf>m</inf></inf>=GCD(s<inf>i<inf>1</inf></inf>,s<inf>i<inf>2</inf></inf>,…,s<inf>i<inf>m</inf></inf>), the greatest common divisor (GCD) of s<inf>i<inf>1</inf></inf>,s<inf>i<inf>2</inf></inf>,…, and s<inf>i<inf>m</inf></inf> is called the GCD tensor on S. The earliest result on GCD tensors goes back to Smith [Proc. Lond. Math. Soc., 1976], who computed the determinant of GCD matrix on S={1,2,…,n} using the Euler's totient function, followed by Beslin–Ligh [Linear Algebra Appl., 1989] who showed all GCD matrices are positive definite. In this note, we study the positivity of higher-order tensors in the k-mode product. We show that all GCD tensors are strongly completely positive (CP). We then show that GCD tensors are infinite divisible. In fact, we prove that for every positive real number r, the tensor T<inf>[S]</inf><sup>∘r</sup>=(t<inf>i<inf>1</inf>i<inf>2</inf>…i<inf>m</inf></inf><sup>r</sup>) is strongly CP. Finally, we obtain an interesting decomposition of GCD tensors using Euler's totient function Φ. Using this decomposition, we show that the determinant (also called hyperdeterminant) of the mth-order GCD tensor T<inf>[S]</inf> on a factor-closed set S={s<inf>1</inf>,…,s<inf>n</inf>} is ∏i=1nΦ(s<inf>i</inf>)<sup>(m−1)<sup>(n−1)</sup></sup>.falseCompletely positive tensor | Determinant of tensor | GCD tensor | K-mode product | Tensor decompositionPositivity of GCD tensors and their determinantsArticle22-4015 February 20260WOS:001619323100001