Dwivedi, G.G.DwivediTyagi, J.J.TyagiVerma, R. B.R. B.Verma2025-08-302025-08-302017-11-0110.1002/mana.2016002502-s2.0-85013890568http://repository.iitgn.ac.in/handle/IITG2025/22358In this paper, we consider the bifurcation problem for the fractional Laplace equation (Formula presented.) where Ω ⊂ R<sup>n</sup> , n > 2s (0 < s < 1) is an open bounded subset with smooth boundary, (−∆)<sup>s</sup> stands for the fractional Laplacian. We show that a continuum of solutions bifurcates out from the principal eigenvalue λ<inf>1</inf> of the problem (Formula presented.) and, conversely.false35A15 | 35B32 | 47G20 | bifurcation | fractional Laplacian | integrodifferential operators | Variational methodsOn the bifurcation results for fractional Laplace equationsArticle152226162597-2611November 20174arJournal2