Selective G-Quadruplex recognition by a novel cyanine dye

Show simple item record Chilka, Pallavi Patlolla, Prathap Reddy Datta, Bhaskar
dc.contributor.other The Albany 2015, Conversation 19
dc.coverage.spatial New York, Albany 2015-06-26T07:20:37Z 2015-06-26T07:20:37Z 2015-06-19
dc.identifier.citation Chilka, Pallavi; Reddy Patlolla, Prathap and Datta, Bhaskar,"Selective G-Quadruplex recognition by a novel cyanine dye", in the Albany 2015, Conversation 19, Departments of Chemistry & Biological Sciences, State University of New York, Albany, Jun. 9-13, 2015. en_US
dc.description.abstract G-rich sequences have been the focus of intense investigations into their widespread occurrence in the human genome. The primary motivation behind these investigations is the ability of G-rich sequences to fold into G-quadruplexes. Putative G-quadruplex forming sequences are implicated in genome regulation and stability. Further, their presence in oncogene promoters has spurred research from the perspective of cancer detection and therapeutics (Siddiqui-Jain, A., etal, 2002). In this context, small molecules that are able to selectively interact with quadruplexes are attractive for their therapeutic or diagnostic applications (Schultze, P., et al 1999; Datta, SG. et al 2014). Relatively small number of quadruplex-specific ligands have been developed so far, primarily owing to the challenge in distinguishing quadruplexes from canonical duplex DNA. (Ihmels, H. & Thomas, L. , 2013). In this work we describe the use of a dimeric benzothiazole-based cyanine dye to selectively bind G-quadruplexes formed by specific G-rich sequences. Fluorimetric titrations of a variety of G-rich sequences into the novel dimeric cyanine dye reveals a nearly 50-fold enhancement in fluorescence of the dye, compared to the emission of the dye in presence of duplex DNA. This enhancement is all the more notable for the fact that the dye fluorescence in presence of duplex DNA is similar to emission of the free dye in solution. The lower background emission of the novel cyanine dye is based on its propensity to self-assemble into fluorescence quenched H-dimers and H-aggregates in a controlled fashion. The fluorescence turn-on observed in presence of specific G-rich sequences is attributable to the de-aggregation of the dyes due to selective interaction with quadruplex secondary structures. UV-visible, fluorescence, CD spectroscopy and foot printing reveal a distinctive binding interaction of the dimeric cyanine dye with quadruplex DNA. We also investigate the ability of the ligand to affect the stability of the quadruplex target. Our results emphasize the potential of a novel dimeric cyanine dye for sensing specific quadruplex secondary structures and opens the possibility of using the dye as a diagnostic and therapeutic agent en_US
dc.description.statementofresponsibility by Pallavi Chilka, Prathap Reddy Patlolla and Bhaskar Datta
dc.language.iso en_US en_US
dc.publisher Albany 2015 en_US
dc.subject DNA en_US
dc.subject G-Quadruplex en_US
dc.subject G-rich sequences en_US
dc.subject Human genome en_US
dc.subject Novel cyanine dye en_US
dc.title Selective G-Quadruplex recognition by a novel cyanine dye en_US
dc.type Article en_US

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


My Account