Abstract:
We study the effect of vorticity present in heavy ion collisions (HICs) on the temperature evolution of hot quark gluon plasma in the presence of spin-vorticity coupling. The initial global rotation entails a nontrivial dependence of the longitudinal flow velocity on the transverse coordinates and also develops a transverse velocity component that depends upon the longitudinal coordinate. Both of these velocities lead to a 2+1 dimensional expansion of the fireball. It is observed that with finite vorticity and spin-polarization the fireball cools faster as compared to the case without vorticity. Furthermore, we discuss the consequence of this on the production of thermal dileptons.