dc.contributor.author |
Banerjee, Debargha |
|
dc.contributor.author |
Saha, Arnab |
|
dc.coverage.spatial |
Switzerland |
|
dc.date.accessioned |
2012-09-26T07:22:29Z |
|
dc.date.available |
2012-09-26T07:22:29Z |
|
dc.date.issued |
2021-09 |
|
dc.identifier.citation |
Banerjee, Debargha and Saha, Arnab, "Differential modular forms over totally real fields of integral weights", Research in Number Theory, DOI: 10.1007/s40993-021-00269-7, vol. 7, no. 3, Sep. 2021. |
en_US |
dc.identifier.issn |
0035-8711 |
|
dc.identifier.issn |
1365-2966 |
|
dc.identifier.uri |
https://doi.org/10.1007/s40993-021-00269-7 |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/6609 |
|
dc.description.abstract |
In this article, we construct a differential modular form of non-zero order and integral weight for compact Shimura curves over totally real fields bigger than Q. The construction uses the theory of lifting ordinary mod p Hilbert modular forms to characteristic 0 as well as the theory of Igusa curve. This is the analogue of the construction of Buium in the case of modular curves parametrizing elliptic curves with level structures. |
|
dc.description.statementofresponsibility |
by Debargha Banerjee and Arnab Saha |
|
dc.format.extent |
vol. 7, no. 3 |
|
dc.language.iso |
en_US |
en_US |
dc.publisher |
Springer Nature |
en_US |
dc.subject |
Witt vectors |
en_US |
dc.subject |
p-adic Modular forms |
en_US |
dc.subject |
Deformation theory |
en_US |
dc.subject |
13F35 |
en_US |
dc.subject |
11F32 |
en_US |
dc.subject |
11F41 |
en_US |
dc.subject |
14D15 |
en_US |
dc.title |
Differential modular forms over totally real fields of integral weights |
en_US |
dc.type |
Article |
en_US |
dc.relation.journal |
Research in Number Theory |
|