Derivation modules for sum and gluing

Show simple item record

dc.contributor.author Saha, Joydip
dc.contributor.author Sengupta, Indranath
dc.coverage.spatial India
dc.date.accessioned 2022-03-26T10:11:11Z
dc.date.available 2022-03-26T10:11:11Z
dc.date.issued 2022-06
dc.identifier.citation Saha, Joydip and Sengupta, Indranath, "Derivation modules for sum and gluing", Proceedings - Mathematical Sciences, DOI: 10.1007/s12044-022-00658-7, vol. 132, no. 1, Jun. 2022. en_US
dc.identifier.issn 0253-4142
dc.identifier.issn 0973-7685
dc.identifier.uri https://doi.org/10.1007/s12044-022-00658-7
dc.identifier.uri https://repository.iitgn.ac.in/handle/123456789/7608
dc.description.abstract In this paper, we explicitly compute the derivation module of quotients of polynomial rings by ideals formed by the sum or by some other gluing technique. We discuss cases of monomial ideals and binomial ideals separately.
dc.description.statementofresponsibility by Joydip Saha and Indranath Sengupta
dc.format.extent vol. 132, no. 1
dc.language.iso en_US en_US
dc.publisher Indian Academy of Sciences en_US
dc.subject Monomial ideals en_US
dc.subject Derivation modules en_US
dc.subject Gluing en_US
dc.subject Polynomial rings en_US
dc.subject Binomial ideals en_US
dc.title Derivation modules for sum and gluing en_US
dc.type Article en_US
dc.relation.journal Proceedings - Mathematical Sciences


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


Browse

My Account