Thermal transport in a weakly magnetized hot QCD medium

Show simple item record Kurian, Manu 2020-05-21T10:45:25Z 2020-05-21T10:45:25Z 2020-05
dc.identifier.citation Kurian, Manu, "Thermal transport in a weakly magnetized hot QCD medium", arXiv, Cornell University Library, DOI: arXiv:2005.04247, May. 2020. en_US
dc.description.abstract The thermal transport coefficients in a weakly magnetized quark-gluon plasma have been investigated within the ambit of a quasiparticle model to encode the effects of the realistic equation of state. The presence of a weak magnetic field leads to the Hall-type conductivity associated with thermal transport in the medium. An effective covariant kinetic theory has been employed to quantify the thermal dissipation while incorporating the mean field contributions in the medium. The interplay of thermal transport and electric charge transport in the weakly magnetized medium has been explored in terms of the Wiedemann-Franz law. Strong violation of the Wiedemann-Franz law has been observed in temperature regimes near to the transition temperature. The behaviour of thermal conductivity in the strong magnetic field limit has also been studied. It is observed that both the magnetic field and equation of state have a significant impact on the thermal dissipation in the medium.
dc.description.statementofresponsibility by Manu Kurian
dc.language.iso en_US en_US
dc.publisher Cornell University Library en_US
dc.title Thermal transport in a weakly magnetized hot QCD medium en_US
dc.type Pre-Print en_US
dc.relation.journal arXiv

Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


My Account