dc.contributor.advisor |
Bhatia, Udit |
|
dc.contributor.author |
Vagadiya, Jenilkumar Virendra |
|
dc.date.accessioned |
2021-10-27T14:12:41Z |
|
dc.date.available |
2021-10-27T14:12:41Z |
|
dc.date.issued |
2021 |
|
dc.identifier.citation |
Vagadiya, Jenilkumar Virendra (2021). Uncertainty quantification using bayesian neural networks: application to plant disease detection and physics guided machine learning. Gandhinagar: Indian Institute of Technology Gandhinagar, 42p. (Acc. No.: T00844). |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/7135 |
|
dc.description.statementofresponsibility |
by Jenilkumar Virendra Vagadiya |
|
dc.format.extent |
xii, 42p.: ill.; hbk.; 30cm. |
|
dc.language.iso |
en_US |
|
dc.publisher |
Indian Institute of Technology Gandhinagar |
|
dc.subject |
19210053 |
|
dc.subject |
Physics Informed Machine Learning -- PIML |
|
dc.subject |
Support Vector Machine |
|
dc.subject |
Gaussian Process Regression |
|
dc.subject |
Variational Inference |
|
dc.subject |
Data collection And Augmentation |
|
dc.title |
Uncertainty quantification using bayesian neural networks: application to plant disease detection and physics guided machine learning |
|
dc.type |
Thesis |
|
dc.contributor.department |
Computer Science and Engineering |
|
dc.description.degree |
M.Tech |
|