Uncertainty quantification using bayesian neural networks: application to plant disease detection and physics guided machine learning

Show simple item record

dc.contributor.advisor Bhatia, Udit
dc.contributor.author Vagadiya, Jenilkumar Virendra
dc.date.accessioned 2021-10-27T14:12:41Z
dc.date.available 2021-10-27T14:12:41Z
dc.date.issued 2021
dc.identifier.citation Vagadiya, Jenilkumar Virendra (2021). Uncertainty quantification using bayesian neural networks: application to plant disease detection and physics guided machine learning. Gandhinagar: Indian Institute of Technology Gandhinagar, 42p. (Acc. No.: T00844).
dc.identifier.uri https://repository.iitgn.ac.in/handle/123456789/7135
dc.description.statementofresponsibility by Jenilkumar Virendra Vagadiya
dc.format.extent xii, 42p.: ill.; hbk.; 30cm.
dc.language.iso en_US
dc.publisher Indian Institute of Technology Gandhinagar
dc.subject 19210053
dc.subject Physics Informed Machine Learning -- PIML
dc.subject Support Vector Machine
dc.subject Gaussian Process Regression
dc.subject Variational Inference
dc.subject Data collection And Augmentation
dc.title Uncertainty quantification using bayesian neural networks: application to plant disease detection and physics guided machine learning
dc.type Thesis
dc.contributor.department Computer Science and Engineering
dc.description.degree M.Tech


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


Browse

My Account