dc.contributor.author |
Dey, Sampa |
|
dc.contributor.author |
Savalia, Aditi |
|
dc.coverage.spatial |
United States of America |
|
dc.date.accessioned |
2023-01-20T07:17:54Z |
|
dc.date.available |
2023-01-20T07:17:54Z |
|
dc.date.issued |
2023-05 |
|
dc.identifier.citation |
Dey, Sampa and Savalia, Aditi, "An induction principle for the Bombieri-Vinogradov theorem over Fq[t] and a variant of the Titchmarsh divisor problem", Journal of Mathematical Analysis and Applications, DOI: 10.1016/j.jmaa.2022.126928, vol. 521, no. 2, May 2023. |
en_US |
dc.identifier.issn |
0022-247X |
|
dc.identifier.issn |
1096-0813 |
|
dc.identifier.uri |
https://doi.org/10.1016/j.jmaa.2022.126928 |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/8496 |
|
dc.description.abstract |
Let Fq[t] be the polynomial ring over the finite field Fq. For arithmetic functions ψ1,ψ2:Fq[t]→C, we establish that if a Bombieri-Vinogradov type equidistribution result holds for ψ1 and ψ2, then it also holds for their Dirichlet convolution ψ1⁎ψ2. As an application of this, we resolve a version of the Titchmarsh divisor problem in Fq[t]. More precisely, we obtain an asymptotic for the average behaviour of the divisor function over shifted products of two primes in Fq[t]. |
|
dc.description.statementofresponsibility |
by Sampa Dey and Aditi Savalia |
|
dc.format.extent |
vol. 521, no. 2 |
|
dc.language.iso |
en_US |
en_US |
dc.publisher |
Elsevier |
en_US |
dc.subject |
Divisor function |
en_US |
dc.subject |
Bombieri-Vinogradov theorem |
en_US |
dc.subject |
Function fields |
en_US |
dc.subject |
Large sieve inequality |
en_US |
dc.subject |
Titchmarsh divisor problem |
en_US |
dc.title |
An induction principle for the Bombieri-Vinogradov theorem over Fq[t] and a variant of the Titchmarsh divisor problem |
en_US |
dc.type |
Journal Paper |
en_US |
dc.relation.journal |
Journal of Mathematical Analysis and Applications |
|