Equivariant spectral triple for the quantum group Uq(2) for complex deformation parameters

Show simple item record

dc.contributor.author Guin, Satyajit
dc.contributor.author Saurabh, Bipul
dc.coverage.spatial United States of America
dc.date.accessioned 2023-01-25T13:27:16Z
dc.date.available 2023-01-25T13:27:16Z
dc.date.issued 2023-03
dc.identifier.citation Guin, Satyajit and Saurabh, Bipul, "Equivariant spectral triple for the quantum group Uq(2) for complex deformation parameters", Journal of Geometry and Physics, DOI: 10.1016/j.geomphys.2022.104748, vol. 185, Mar. 2023. en_US
dc.identifier.issn 0393-0440
dc.identifier.issn 1879-1662
dc.identifier.uri https://doi.org/10.1016/j.geomphys.2022.104748
dc.identifier.uri https://repository.iitgn.ac.in/handle/123456789/8518
dc.description.abstract Let q=|q|eiπθ be a nonzero complex number such that |q|≠1 and consider the compact quantum group Uq(2). For θ∉Q∖{0,1}, we obtain the K-theory of the underlying C⁎-algebra C(Uq(2)). We construct a spectral triple on Uq(2) which is equivariant under its own comultiplication action. The spectral triple obtained here is even, 4+-summable, non-degenerate, and the Dirac operator acts on two copies of the L2-space of Uq(2). The K-homology class of the associated Fredholm module is shown to be nontrivial.
dc.description.statementofresponsibility by Satyajit Guin and Bipul Saurabh
dc.format.extent vol. 185
dc.language.iso en_US en_US
dc.publisher Elsevier en_US
dc.subject Compact quantum group en_US
dc.subject Spectral triple en_US
dc.subject Quantum unitary group en_US
dc.subject Equivariance en_US
dc.subject Fredholm module en_US
dc.title Equivariant spectral triple for the quantum group Uq(2) for complex deformation parameters en_US
dc.type Journal Paper en_US
dc.relation.journal Journal of Geometry and Physics


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search Digital Repository


Browse

My Account