dc.contributor.author |
Guin, Satyajit |
|
dc.contributor.author |
Saurabh, Bipul |
|
dc.coverage.spatial |
United States of America |
|
dc.date.accessioned |
2023-01-25T13:27:16Z |
|
dc.date.available |
2023-01-25T13:27:16Z |
|
dc.date.issued |
2023-03 |
|
dc.identifier.citation |
Guin, Satyajit and Saurabh, Bipul, "Equivariant spectral triple for the quantum group Uq(2) for complex deformation parameters", Journal of Geometry and Physics, DOI: 10.1016/j.geomphys.2022.104748, vol. 185, Mar. 2023. |
en_US |
dc.identifier.issn |
0393-0440 |
|
dc.identifier.issn |
1879-1662 |
|
dc.identifier.uri |
https://doi.org/10.1016/j.geomphys.2022.104748 |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/8518 |
|
dc.description.abstract |
Let q=|q|eiπθ be a nonzero complex number such that |q|≠1 and consider the compact quantum group Uq(2). For θ∉Q∖{0,1}, we obtain the K-theory of the underlying C⁎-algebra C(Uq(2)). We construct a spectral triple on Uq(2) which is equivariant under its own comultiplication action. The spectral triple obtained here is even, 4+-summable, non-degenerate, and the Dirac operator acts on two copies of the L2-space of Uq(2). The K-homology class of the associated Fredholm module is shown to be nontrivial. |
|
dc.description.statementofresponsibility |
by Satyajit Guin and Bipul Saurabh |
|
dc.format.extent |
vol. 185 |
|
dc.language.iso |
en_US |
en_US |
dc.publisher |
Elsevier |
en_US |
dc.subject |
Compact quantum group |
en_US |
dc.subject |
Spectral triple |
en_US |
dc.subject |
Quantum unitary group |
en_US |
dc.subject |
Equivariance |
en_US |
dc.subject |
Fredholm module |
en_US |
dc.title |
Equivariant spectral triple for the quantum group Uq(2) for complex deformation parameters |
en_US |
dc.type |
Journal Paper |
en_US |
dc.relation.journal |
Journal of Geometry and Physics |
|