dc.contributor.author |
Jaiswal, Anjali |
|
dc.contributor.author |
Rani, Poonam |
|
dc.contributor.author |
Tyagi, Jagmohan |
|
dc.coverage.spatial |
United States of America |
|
dc.date.accessioned |
2023-02-09T14:23:46Z |
|
dc.date.available |
2023-02-09T14:23:46Z |
|
dc.date.issued |
2023-07 |
|
dc.identifier.citation |
Jaiswal, Anjali; Rani, Poonam and Tyagi, Jagmohan, “Global weak solutions of a parabolic-elliptic Keller-Segel system with gradient dependent chemotactic coefficients”, Discrete and Continuous Dynamical Systems - B, DOI: 10.3934/dcdsb.2023002, vol. 28, no. 7, pp. 4144-4166, Jul. 2023. |
en_US |
dc.identifier.issn |
1531-3492 |
|
dc.identifier.issn |
1553-524X |
|
dc.identifier.uri |
https://doi.org/10.3934/dcdsb.2023002 |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/8545 |
|
dc.description.abstract |
We consider the following Keller-Segel system with gradient dependent chemotactic coefficient:ut = ∆u − χ∇ · (uf(|∇v|)∇v), 0 = ∆v − v + g(u), in smooth bounded domains Ω ⊂ Rn, n ≥ 1 with f(ξ) = (ξp-2(1+ξp) q−p/p), 1 <q ≤ p < ∞ and g(ξ) = (1+ξ)1−β, ξ ≥ 0, β ∈ [0, 1]. We show the existence of a global weak solution, bounded in L∞-norm, if (1 < q ≤ p < ∞, n = 1,
1 < q < n/n−1, n>=2 |
|
dc.description.statementofresponsibility |
by Anjali Jaiswal, Poonam Rani and Jagmohan Tyagi |
|
dc.format.extent |
vol. 28, no. 7, pp. 4144-4166 |
|
dc.language.iso |
en_US |
en_US |
dc.publisher |
American Institute of Mathematical Sciences |
en_US |
dc.subject |
Global weak solutions |
en_US |
dc.subject |
Chemotactic coefficients |
en_US |
dc.subject |
Keller-Segel system |
en_US |
dc.subject |
Chemotaxis |
en_US |
dc.subject |
Quasilinear parabolic equation |
en_US |
dc.title |
Global weak solutions of a parabolic-elliptic Keller-Segel system with gradient dependent chemotactic coefficients |
en_US |
dc.type |
Journal Paper |
en_US |
dc.relation.journal |
Discrete and Continuous Dynamical Systems - B |
|