dc.contributor.author |
Cisto, Carmelo |
|
dc.contributor.author |
Navarra, Francesco |
|
dc.contributor.author |
Veer, Dharm |
|
dc.coverage.spatial |
United States of America |
|
dc.date.accessioned |
2023-12-19T13:48:22Z |
|
dc.date.available |
2023-12-19T13:48:22Z |
|
dc.date.issued |
2024-03 |
|
dc.identifier.citation |
Cisto, Carmelo; Navarra, Francesco and Veer, Dharm, "Polyocollection ideals and primary decomposition of polyomino ideals", Journal of Algebra, DOI: 10.1016/j.jalgebra.2023.11.024, vol. 641, pp. 498-529, Mar. 2024. |
|
dc.identifier.issn |
0021-8693 |
|
dc.identifier.issn |
1090-266X |
|
dc.identifier.uri |
https://doi.org/10.1016/j.jalgebra.2023.11.024 |
|
dc.identifier.uri |
https://repository.iitgn.ac.in/handle/123456789/9572 |
|
dc.description.abstract |
In this article, we study the primary decomposition of some binomial ideals. In particular, we introduce the concept of polyocollection, a combinatorial object that generalizes the definitions of collection of cells and polyomino, that can be used to compute a primary decomposition of non-prime polyomino ideals. Furthermore, we give a description of the minimal primary decomposition of non-prime closed path polyominoes. In particular, for such a class of polyominoes, we characterize the set of all zig-zag walks and show that the minimal prime ideals have a very nice combinatorial description. |
|
dc.description.statementofresponsibility |
by Carmelo Cisto, Francesco Navarra and Dharm Veer |
|
dc.format.extent |
vol. 641, pp. 498-529 |
|
dc.language.iso |
en_US |
|
dc.publisher |
Elsevier |
|
dc.subject |
Polyominoes |
|
dc.subject |
Primary decomposition |
|
dc.subject |
Zig-zag walk |
|
dc.title |
Polyocollection ideals and primary decomposition of polyomino ideals |
|
dc.type |
Article |
|
dc.relation.journal |
Journal of Algebra |
|