Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Computer Science and Engineering
  4. CSE Publications
  5. SentinelKilnDB: a large-scale dataset and benchmark for OBB Brick Kiln detection in South Asia using satellite imagery
 
  • Details

SentinelKilnDB: a large-scale dataset and benchmark for OBB Brick Kiln detection in South Asia using satellite imagery

Source
39th Annual Conference on Neural Information Processing Systems (NeurIPS 2025)
Date Issued
2025-12
Author(s)
Mondal, Rishabh
Parab, Jeet
Kubadia, Heer
Dubey, Shataxi
Junagade, Shardul
Patel, Zeel B.
Batra, Nipun  
Abstract
Air pollution was responsible for 2.6 million deaths across South Asia in 2021 alone, with brick manufacturing contributing significantly to this burden. In particular, the Indo-Gangetic Plain; a densely populated and highly polluted region spanning northern India, Pakistan, Bangladesh, and parts of Afghanistan sees brick kilns contributing 8–14% of ambient air pollution. Traditional monitoring approaches, such as field surveys and manual annotation using tools like Google Earth Pro, are time and labor-intensive. Prior ML-based efforts for automated detection have relied on costly high-resolution commercial imagery and non-public datasets, limiting reproducibility and scalability. In this work, we introduce SENTINELKILNDB, a publicly available, hand-validated benchmark of 62,671 brick kilns spanning three kiln types Fixed Chimney Bull’s Trench Kiln (FCBK), Circular FCBK (CFCBK), and Zigzag kilns - annotated with oriented bounding boxes (OBBs) across 2.8 million km2 using free and globally accessible Sentinel-2 imagery. We benchmark state-of-the-art oriented object detection models and evaluate generalization across in-region, out-of-region, and super-resolution settings. SENTINELKILNDB enables rigorous evaluation of geospatial generalization and robustness for low-resolution object detection, and provides a new testbed for ML models addressing real-world environmental and remote sensing challenges at a continental scale.
URI
http://repository.iitgn.ac.in/handle/IITG2025/33784
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify