Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Equivariant spectral triple for the quantum group Uq(2) for complex deformation parameters
 
  • Details

Equivariant spectral triple for the quantum group Uq(2) for complex deformation parameters

Source
Journal of Geometry and Physics
ISSN
03930440
Date Issued
2023-03-01
Author(s)
Guin, Satyajit
Saurabh, Bipul  
DOI
10.1016/j.geomphys.2022.104748
Volume
185
Abstract
Let q=|q|e<sup>iπθ</sup> be a nonzero complex number such that |q|≠1 and consider the compact quantum group U<inf>q</inf>(2). For θ∉Q∖{0,1}, we obtain the K-theory of the underlying C<sup>⁎</sup>-algebra C(U<inf>q</inf>(2)). We construct a spectral triple on U<inf>q</inf>(2) which is equivariant under its own comultiplication action. The spectral triple obtained here is even, 4<sup>+</sup>-summable, non-degenerate, and the Dirac operator acts on two copies of the L<sup>2</sup>-space of U<inf>q</inf>(2). The K-homology class of the associated Fredholm module is shown to be nontrivial.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/26870
Subjects
Compact quantum group | Equivariance | Quantum unitary group | Spectral triple
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify