Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Electrical Engineering
  4. EE Publications
  5. SAUCF: A Framework for Secure, Natural-Language-Guided UAS Control
 
  • Details

SAUCF: A Framework for Secure, Natural-Language-Guided UAS Control

Source
Drones
Date Issued
2025-12-01
Author(s)
Shah, Nihar
Aggarwal, Varun
Saraswat, Dharmendra
DOI
10.3390/drones9120860
Volume
9
Issue
12
Abstract
Highlights: What are the main findings? SAUCF achieves secure voice-driven mission planning in under 105 s with a 97.5% safety classification accuracy and 0.52 m GPS trajectory precision. The decision-tree based framework demonstrated safety compliance across simulation and field trials with continuous human-in-the-loop supervision. What are the implications of the main findings? Eliminates complex mission planning enabling non-expert agricultural operators to control UAS through natural language commands. Provides a validated framework integrating biometric security, LLM-based planning, and operator oversight for safe agricultural UAS deployment. Precision agriculture increasingly recognizes the transformative potential of unmanned aerial systems (UASs) for crop monitoring and field assessment, yet research consistently highlights significant usability barriers as the main constraints to widespread adoption. Complex mission planning processes, including detailed flight plan creation and way point management, pose substantial technical challenges that mainly affect non-expert operators. Farmers and their teams generally prefer user-friendly, straightforward tools, as evidenced by the rapid adoption of GPS guidance systems, which underscores the need for simpler mission planning in UAS operations. To enhance accessibility and safety in UAS control, especially for non-expert operators in agriculture and related fields, we propose a Secure UAS Control Framework (SAUCF): a comprehensive system for natural-language-driven UAS mission management with integrated dual-factor biometric authentication. The framework converts spoken user instructions into executable flight plans by leveraging a language-model-powered mission planner that interprets transcribed voice commands and generates context-aware operational directives, including takeoff, location monitoring, return-to-home, and landing operations. Mission orchestration is performed through a large language model (LLM) agent, coupled with a human-in-the-loop supervision mechanism that enables operators to review, adjust, or confirm mission plans before deployment. Additionally, SAUCF offers a manual override feature, allowing users to assume direct control or interrupt missions at any stage, ensuring safety and adaptability in dynamic environments. Proof-of-concept demonstrations on a UAS plat-form with on-board computing validated reliable speech-to-text transcription, biometric verification via voice matching and face authentication, and effective Sim2Real transfer of natural-language-driven mission plans from simulation environments to physical UAS operations. Initial evaluations showed that SAUCF reduced mission planning time, minimized command errors, and simplified complex multi-objective workflows compared to traditional waypoint-based tools, though comprehensive field validation remains necessary to confirm these preliminary findings. The integration of natural-language-based interaction, real-time identity verification, human-in-the-loop LLM orchestration, and manual override capabilities allows SAUCF to significantly lower the technical barrier to UAS operation while ensuring mission security, operational reliability, and operator agency in real-world conditions. These findings lay the groundwork for systematic field trials and suggest that prioritizing ease of operation in mission planning can drive broader deployment of UAS technologies.
URI
http://repository.iitgn.ac.in/handle/IITG2025/33754
Keywords
human-in-the-loop control | large language models | mission planning | sim-to-real | simulation testing | unmanned aerial systems
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify