Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Controlled etching of silica nanospheres monolayer for template application: A systematic study
 
  • Details

Controlled etching of silica nanospheres monolayer for template application: A systematic study

Source
Applied Surface Science
ISSN
01694332
Date Issued
2020-01-15
Author(s)
Utsav,  
Khanna, Sakshum
Paneliya, Sagar
Ray, Abhijit
Mukhopadhyay, Indrajit
Banerjee, Rupak  
DOI
10.1016/j.apsusc.2019.144050
Volume
500
Abstract
Monolayers of silica nanospheres (SNs), via self- or guided-assembly has been extensively used for template fabrication in thin films, employed in the areas of plasmonics, photonic crystals, and solar cells. We report on a versatile, rapid, and controllable process to obtain non-close-packed structure by restructuring the SNs geometry at two-particle level. A geometrical model has been proposed to quantify parameters that control the final morphology of the monolayer. SNs of different sizes (viz. 140 nm, 170 nm, and 220 nm) were self-assembled as a close-packed monolayer on a silicon substrate using a three-step spin coating method and then sintered at 950 °C before being exposed to an etchant. We investigate the dependence of particle radius, neck (formed due to sintering) parameters and distance between the SNs, on etching time and etchant concentration. The intermediate and final morphology of the restructured monolayer is used as a template to grow silicon nanowires using metal-assisted chemical etching. We provide quantitative estimates of the parameters pertaining to the restructuring of the monolayer of SNs, which can be used as tunable templates for the growth of nanowires. The optimized process can be scaled-up for industrial application because of its faster and controllable rate of production.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/23092
Subjects
Etching | Non-close-packed monolayer | Self-assembly | Silica nanospheres | Sintering
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify