Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Exploring structure-property landscape of non-fullerene acceptors for organic solar cells
 
  • Details

Exploring structure-property landscape of non-fullerene acceptors for organic solar cells

Source
Journal of Chemical Physics
ISSN
00219606
Date Issued
2024-04-14
Author(s)
Patel, Khantil
Khatua, Rudranarayan
Patrikar, Kalyani
Mondal, Anirban  
DOI
10.1063/5.0191650
Volume
160
Issue
14
Abstract
We present a comprehensive analysis of the structure-property relationship in small molecule non-fullerene acceptors (NFAs) featuring an acceptor-donor-acceptor configuration employing state-of-the-art quantum chemical computational methods. Our focus lies in the strategic functionalization of halogen groups at the terminal positions of NFAs as an effective means to mitigate non-radiative voltage losses and augment photovoltaic and photophysical properties relevant to organic solar cells. Through photophysical studies, we observe a bathochromic shift in the visible region for all halogen-functionalized NFAs, except type-2, compared to the unmodified compound. Most of these functionalized compounds exhibit exciton binding energies below 0.3 eV and Δ<inf>LUMO</inf> less than 0.3 eV, indicating their potential as promising candidates for organic solar cells. Selected candidate structures undergo an analysis of charge transport properties using the semi-classical Marcus theory based on hopping transport formalism. Molecular dynamics simulations followed by charge transport simulations reveal an ambipolar nature of charge transport in the investigated NFAs, with equivalent hole and electron mobilities compared to the parent compound. Our findings underscore the crucial role of end-group functionalization in enhancing the photovoltaic and photophysical characteristics of NFAs, ultimately improving the overall performance of organic solar cells. This study advances our understanding of the structure-property relationships in NFAs and provides valuable insights into the design and optimization of organic solar cell materials.
Publication link
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0191650/19879903/144709_1_5.0191650.pdf
URI
https://d8.irins.org/handle/IITG2025/28953
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify