Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Computer Science and Engineering
  4. CSE Publications
  5. Private sketches for linear regression
 
  • Details

Private sketches for linear regression

Source
arXiv
Date Issued
2025-11
Author(s)
Das, Shrutimoy
Nayak, Debanuj
Dr Anirban Dasgupta  
Indian Institute of Technology, Gandhinagar
DOI
10.48550/arXiv.2511.07365
Abstract
Linear regression is frequently applied in a variety of domains. In order to improve the efficiency of these methods, various methods have been developed that compute summaries or \emph{sketches} of the datasets. Certain domains, however, contain sensitive data which necessitates that the application of these statistical methods does not reveal private information. Differentially private (DP) linear regression methods have been developed for mitigating this problem. These techniques typically involve estimating a noisy version of the parameter vector. Instead, we propose releasing private sketches of the datasets. We present differentially private sketches for the problems of least squares regression, as well as least absolute deviations regression. The availability of these private sketches facilitates the application of commonly available solvers for regression, without the risk of privacy leakage
URI
http://repository.iitgn.ac.in/handle/IITG2025/33510
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify