Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Mathematics
  4. MATH Publications
  5. Computing epsilon multiplicities in graded algebras
 
  • Details

Computing epsilon multiplicities in graded algebras

Source
Journal of Pure and Applied Algebra
ISSN
00224049
Date Issued
2025-11-01
Author(s)
Das, Suprajo
Dubey, Saipriya
Roy, Sudeshna  
Verma, Jugal K.  
DOI
10.1016/j.jpaa.2025.108107
Volume
229
Issue
11
Abstract
This article investigates the computational aspects of the ε-multiplicity. Primarily, we show that the ε-multiplicity of a homogeneous ideal I in a two-dimensional standard graded domain of finite type over an algebraically closed field of arbitrary characteristic, is always a rational number. In this situation, we produce a formula for the ε-multiplicity of I in terms of certain mixed multiplicities associated to I. In any dimension, under the assumptions that the saturated Rees algebra of I is finitely generated, we give a different expression of the ε-multiplicity in terms of mixed multiplicities by using the Veronese degree. This enabled us to make various explicit computations of ε-multiplicities. We further write a Macaulay2 algorithm to compute ε-multiplicity (under the Noetherian hypotheses) even when the base ring is not necessarily standard graded.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/33305
Keywords
Epsilon multiplicity | Hilbert functions | Local cohomology | Mixed multiplicities
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify