Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Mathematics
  4. MATH Publications
  5. Gersten-type conjecture for henselian local rings of normal crossing varieties
 
  • Details

Gersten-type conjecture for henselian local rings of normal crossing varieties

Source
arXiv
Date Issued
2024-02-01
Author(s)
Sakagaito, Makoto
DOI
10.48550/arXiv.2402.18042
Abstract
Let n?0 be an integer. For a normal crossing variety Y over the spectrum of a field k of positive characteristic p>0, K.Sato defined an �tale logarithmic Hodge-Witt sheaf ?nY,r on the �tale site Ye�t which agrees with Wr?nY,log in the case where Y is smooth over Spec(k). In this paper, we prove the Gersten-type conjecture for ?nr over the henselization of the local ring OY,y of Y at a point y?Y. As an application, we prove the relative version of the Gersten-type conjecture for the p-adic �tale Tate twist T1(n) over the henselization of the local ring OX,x of a semistable family X over the spectrum of a discrete valuation ring B of mixed characteristic (0,p) at a point x?X in the case where B contains p-th roots of unity. Moreover, we prove a generalization of Artin's theorem about the Brauer groups.
URI
http://repository.iitgn.ac.in/handle/IITG2025/20142
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify