Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Computer Science and Engineering
  4. CSE Publications
  5. In search of goodness: large scale benchmarking of goodness functions for the forward-forward algorithm
 
  • Details

In search of goodness: large scale benchmarking of goodness functions for the forward-forward algorithm

Source
arXiv
Date Issued
2025-11
Author(s)
Shah, Arya
Dr Vaibhav Tripathi  
Indian Institute of Technology, Gandhinagar
DOI
10.48550/arXiv.2511.18567
Abstract
The Forward-Forward (FF) algorithm offers a biologically plausible alternative to backpropagation, enabling neural networks to learn through local updates. However, FF's efficacy relies heavily on the definition of "goodness", which is a scalar measure of neural activity. While current implementations predominantly utilize a simple sum-of-squares metric, it remains unclear if this default choice is optimal. To address this, we benchmarked 21 distinct goodness functions across four standard image datasets (MNIST, FashionMNIST, CIFAR-10, STL-10), evaluating classification accuracy, energy consumption, and carbon footprint. We found that certain alternative goodness functions inspired from various domains significantly outperform the standard baseline. Specifically, \texttt{game\_theoretic\_local} achieved 97.15\% accuracy on MNIST, \texttt{softmax\_energy\_margin\_local} reached 82.84\% on FashionMNIST, and \texttt{triplet\_margin\_local} attained 37.69\% on STL-10. Furthermore, we observed substantial variability in computational efficiency, highlighting a critical trade-off between predictive performance and environmental cost. These findings demonstrate that the goodness function is a pivotal hyperparameter in FF design. We release our code on \href{this https URL}{Github} for reference and reproducibility.
URI
http://repository.iitgn.ac.in/handle/IITG2025/33592
Subjects
Forward-Forward algorithm
Biologically plausible learning
Goodness functions
Green AI
Energy-based models
Contrastive learning
Sustainable deep learning
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify