Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. A Neuromodulation-based Spiking Neural Network using ReRAM Array
 
  • Details

A Neuromodulation-based Spiking Neural Network using ReRAM Array

Source
Proceedings IEEE International Symposium on Circuits and Systems
ISSN
02714310
Date Issued
2025-01-01
Author(s)
Shah, Nirmal
Sakhuja, Jayatika
Ganguly, Udayan
Lashkare, Sandip 
Somappa, Laxmeesha
DOI
10.1109/ISCAS56072.2025.11044010
Abstract
This work proposes a neuromodulation-inspired spiking neural network using a ReRAM memory. A stashing-merging algorithm is realized to mimic the inherent neuromodulation in humans. While traditional pruning methods remove redundant parts of the network, stashing excludes well-trained neurons while training and restores all neurons at the end of training. This approach exhibits energy-efficient training in the context of a spiking neural network (SNN) since well-trained neurons can be easily identified using the spike count. The idea is validated using a ReRAM-based SNN with 10 conductance levels and performs close to a traditional artificial neural network (ANN) on an MNIST classification workload.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/28370
Subjects
Neuromodulation | neuromorphic computing | Neurons | ReRAM | spiking neural networks | Stashing algorithm | Synapse
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify