Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Mathematics
  4. MATH Publications
  5. Boundary regularity for double phase gradient-degenerate fully nonlinear elliptic equations
 
  • Details

Boundary regularity for double phase gradient-degenerate fully nonlinear elliptic equations

Source
Bulletin Des Sciences Mathematiques
ISSN
00074497
Date Issued
2026-04-01
Author(s)
Oza, Priyank
Tyagi, Jagmohan  
DOI
10.1016/j.bulsci.2025.103785
Volume
208
Abstract
We investigate a class of equations involving fully nonlinear degenerate elliptic operators with a Hamiltonian term. A distinctive feature of this class is that the degeneracy arises both from the operator itself and from a variable-exponent double phase gradient structure. We first prove a comparison principle for viscosity subsolutions and supersolutions. Using an adapted Ishii–Lions “doubling of variables” method, we obtain interior Hölder regularity for viscosity solutions. Moreover, under suitable structural conditions, we extend these Hölder regularity estimates up to the boundary.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/33690
Keywords
Fully nonlinear degenerate elliptic equations | Variable exponents | Viscosity solution
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify