Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Mathematics
  4. MATH Publications
  5. Minimal graded free resolution for monomial curves in A4 defined by almost arithmetic sequences
 
  • Details

Minimal graded free resolution for monomial curves in A4 defined by almost arithmetic sequences

Date Issued
2015-03-01
Author(s)
Roy, Achintya Kumar
Sengupta, Indranath
Tripathi, Gaurab
Abstract
Let $\mm=(m_0,m_1,m_2,n)$ be an almost arithmetic sequence, i.e., a sequence of positive integers with gcd(m0,m1,m2,n)=1, such that m0<m1<m2 form an arithmetic progression, n is arbitrary and they minimally generate the numerical semigroup $\Gamma = m_0\N + m_1\N + m_2\N + n\N$. Let k be a field. The homogeneous coordinate ring k[?] of the affine monomial curve parametrically defined by X0=tm0,X1=tm1,X2=tm3,Y=tn is a graded R-module, where R is the polynomial ring k[X0,X1,X3,Y] with the grading degXi:=mi,degY:=n. In this paper, we construct a minimal graded free resolution for k[?].
URI
http://repository.iitgn.ac.in/handle/IITG2025/20015
Subjects
Arithmetic sequence
Monomial Curves
Numerical semigroup
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify