Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. An Observationally Constrained Analytical Model for Predicting the Magnetic Field Vectors of Interplanetary Coronal Mass Ejections at 1 au
 
  • Details

An Observationally Constrained Analytical Model for Predicting the Magnetic Field Vectors of Interplanetary Coronal Mass Ejections at 1 au

Source
Astrophysical Journal
ISSN
0004637X
Date Issued
2020-01-10
Author(s)
Sarkar, Ranadeep
Gopalswamy, Nat
Srivastava, Nandita
DOI
10.3847/1538-4357/ab5fd7
Volume
888
Issue
2
Abstract
We report on an observationally constrained analytical model, the INterplanetary Flux ROpe Simulator (INFROS), for predicting the magnetic field vectors of coronal mass ejections (CMEs) in the interplanetary medium. The main architecture of INFROS involves using the near-Sun flux rope properties obtained from the observational parameters that are evolved through the model in order to estimate the magnetic field vectors of interplanetary CMEs (ICMEs) at any heliocentric distance. We have formulated a new approach in INFROS to incorporate the expanding nature and the time-varying axial magnetic field strength of the flux rope during its passage over the spacecraft. As a proof of concept, we present the case study of an Earth-impacting CME which occurred on 2013 April 11. Using the near-Sun properties of the CME flux rope, we have estimated the magnetic vectors of the ICME as intersected by the spacecraft at 1 au. The predicted magnetic field profiles of the ICME show good agreement with those observed by the in situ spacecraft. Importantly, the maximum strength (10.5 2.5 nT) of the southward component of the magnetic field (Bz) obtained from the model prediction is in agreement with the observed value (11 nT). Although our model does not include the prediction of the ICME plasma parameters, as a first-order approximation, it shows promising results in forecasting of Bz in near real time, which is critical for predicting the severity of the associated geomagnetic storms. This could prove to be a simple space-weather forecasting tool compared to the time-consuming and computationally expensive MHD models.
Publication link
https://iopscience.iop.org/article/10.3847/1538-4357/ab5fd7/pdf
URI
https://d8.irins.org/handle/IITG2025/24247
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify