Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Mathematics
  4. MATH Publications
  5. Global solutions for time-space fractional fully parabolic Keller–Segel system
 
  • Details

Global solutions for time-space fractional fully parabolic Keller–Segel system

Source
Zeitschrift Fur Analysis Und Ihre Anwendungen
ISSN
02322064
Date Issued
2024-01-01
Author(s)
Akilandeeswari, Aruchamy
Gandal, Somnath
Tyagi, Jagmohan  
DOI
10.4171/zaa/1776
Volume
44
Issue
3
Abstract
We show the existence of a global solution to time-space fractional fully parabolic Keller–Segel system: (Formula presented.) under the smallness condition on the initial data, where 0 < β < 1, 1 < α ≤ 2 and n ≥ 2, u and v denote the cell density and the concentration of the chemoattractant, respectively, and (Formula presented.) denotes the Caputo fractional derivative of order β with respect to time t. The nonlocal operator (-Δ)<sup>α/2</sup>, defined with respect to the space variable x, is known as the Laplacian of order (Formula presented.). We establish the existence of weak solution to the above system by fixed-point arguments under suitable conditions on u<inf>0</inf> and v<inf>0</inf>.
Publication link
https://doi.org/10.4171/zaa/1776
URI
http://repository.iitgn.ac.in/handle/IITG2025/33426
Keywords
existence theory | fixed-point theorem | mild solutions | parabolic-parabolic Keller–Segel system | time-space fractional system
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify