Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Computer Science and Engineering
  4. CSE Publications
  5. Benchmarking active learning for NILM
 
  • Details

Benchmarking active learning for NILM

ISSN
2331-8422
Date Issued
2024-11
Author(s)
Patel, Dhruv
Jain, Ankita Kumari
Khandor, Haikoo
Choudhary, Xhitij
Dr Nipun Batra  
Indian Institute of Technology, Gandhinagar
DOI
10.48550/arXiv.2411.15805
Abstract
Non-intrusive load monitoring (NILM) focuses on disaggregating total household power consumption into appliance-specific usage. Many advanced NILM methods are based on neural networks that typically require substantial amounts of labeled appliance data, which can be challenging and costly to collect in real-world settings. We hypothesize that appliance data from all households does not uniformly contribute to NILM model improvements. Thus, we propose an active learning approach to selectively install appliance monitors in a limited number of houses. This work is the first to benchmark the use of active learning for strategically selecting appliance-level data to optimize NILM performance. We first develop uncertainty-aware neural networks for NILM and then install sensors in homes where disaggregation uncertainty is highest. Benchmarking our method on the publicly available Pecan Street Dataport dataset, we demonstrate that our approach significantly outperforms a standard random baseline and achieves performance comparable to models trained on the entire dataset. Using this approach, we achieve comparable NILM accuracy with approximately 30% of the data, and for a fixed number of sensors, we observe up to a 2x reduction in disaggregation errors compared to random sampling.
URI
http://repository.iitgn.ac.in/handle/IITG2025/33779
Subjects
Active Learning
Bayesian Neural Networks
NILM
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify