Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Configuration and Force-field Aware Variable Impedance Control with Faster Re-learning
 
  • Details

Configuration and Force-field Aware Variable Impedance Control with Faster Re-learning

Source
Journal of Intelligent and Robotic Systems Theory and Applications
ISSN
09210296
Date Issued
2024-03-01
Author(s)
Jadav, Shail
Palanthandalam-Madapusi, Harish J.  
DOI
10.1007/s10846-023-02022-x
Volume
110
Issue
1
Abstract
Variable impedance control (VIC) is rapidly becoming an important ingredient for robotic manipulation in unstructured and uncertain environments. In such situations, it is often necessary to rapidly adapt to different impedance levels as per the task requirements, and to return to a low baseline impedance for safety requirements. Such a capability is crucial to stabilize interactions in divergent force fields, which commonly arise in a variety of contact and force production tasks and occasionally in non-contact tasks. Conventional methods, such as iterative learning control, often underperform in terms of stabilization and efficacy. While VIC algorithms perform better, typical challenges in such methods include unnecessarily high impedance adaptation in divergent fields, difficulty in distinguishing between error-independent and error-based divergent forces, and reliance on the Jacobian inverse which diminishes performance near singularities. In this paper, we introduce an innovative VIC algorithm that addresses typical VIC challenges. The proposed method employs a Cartesian-space field adaptation avoiding the need for inverting the Jacobian during adaptation, while at the same time providing a theoretical stabilization guarantee. Utilizing the Lyapunov function, the algorithm is shown to drive tracking errors to zero, even in the presence of divergent position and velocity-error fields and error-independent forces. Notably, the system exhibits human-like relearning at a faster pace when exposed to previously learned fields or perturbations, improving learning speeds by up to 47.97%. Performance validation was conducted through simulations on a two-link serial chain manipulator that mimics the human arm, as well as tests on a seven degrees-of-freedom KUKA robot, underscoring the algorithm’s advantages in handling VIC challenges and uncertain conditions.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/26434
Subjects
Adaptive | Control | Human-like | Impedance | Robotics
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify