Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Electrical Engineering
  4. EE Publications
  5. Process-Performance Variability Modeling of Inner Spacer Etch in GAA FETs
 
  • Details

Process-Performance Variability Modeling of Inner Spacer Etch in GAA FETs

Source
International Conference on Simulation of Semiconductor Processes and Devices SISPAD
ISSN
19461569
Date Issued
2025-01-01
Author(s)
Maheshwari, Om
Dr Nihar Ranjan Mohapatra  
Indian Institute of Technology, Gandhinagar
DOI
10.1109/SISPAD66650.2025.11186016
Abstract
This work presents a robust machine learning (ML) framework for modeling the inner spacer etch process and its impact on electrical behavior in gate-all-around (GAA) FETs. Leveraging an in-house Process Monte Carlo (PMC) simulator, the etch front evolution under diverse process conditions is simulated. Gaussian Process Regression (GPR) demonstrates superior accuracy (98.5%) in modeling inner spacer etch process. Artificial Neural Networks (ANNs) are employed to map inner spacer etch geometric variations to device current characteristics with 98.2% accuracy. The proposed ML pipeline establishes a direct process-to-device link, enabling accurate assessment of electrical performance variations, and paving the way for data-driven process-performance co-optimization in advanced transistor technologies.
URI
http://repository.iitgn.ac.in/handle/IITG2025/33579
Keywords
ANN | gate all around FETs | GPR | inner spacer etch | NSFET | particle monte-carlo | process variation
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify