Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Singular Adams inequality for biharmonic operator on Heisenberg Group and its applications
 
  • Details

Singular Adams inequality for biharmonic operator on Heisenberg Group and its applications

Source
Nonlinear Differential Equations and Applications
ISSN
10219722
Date Issued
2016-12-01
Author(s)
Dwivedi, G.
Tyagi, J.  
DOI
10.1007/s00030-016-0412-z
Volume
23
Issue
6
Abstract
The goal of this paper is to establish singular Adams type inequality for biharmonic operator on Heisenberg group. As an application, we establish the existence of a solution to ΔHn2u=f(ξ,u)ρ(ξ)ainΩ,u|∂Ω=0=∂u∂ν|∂Ω,where 0 ∈ Ω ⊆ H<sup>4</sup> is a bounded domain, 0≤a≤Q,(Q=10). The special feature of this problem is that it contains an exponential nonlinearity and singular potential.
Publication link
https://link.springer.com/content/pdf/10.1007/s00030-016-0412-z.pdf
URI
http://repository.iitgn.ac.in/handle/IITG2025/21796
Subjects
Bi-Laplacian | Heisenberg group | Singular Adams inequality | Variational methods
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify