Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. α-Synuclein fibrils explore actin-mediated macropinocytosis for cellular entry into model neuroblastoma neurons
 
  • Details

α-Synuclein fibrils explore actin-mediated macropinocytosis for cellular entry into model neuroblastoma neurons

Source
Traffic
ISSN
13989219
Date Issued
2022-07-01
Author(s)
Hivare, Pravin
Gadhavi, Joshna
Bhatia, Dhiraj  
Gupta, Sharad  
DOI
10.1111/tra.12859
Volume
23
Issue
7
Abstract
Alpha-synuclein (α-Syn), an intrinsically disordered protein (IDP), is associated with neurodegenerative disorders, including Parkinson's disease (PD or other α-synucleinopathies. Recent investigations propose the transmission of α-Syn protein fibrils, in a prion-like manner, by entering proximal cells to seed further fibrillization in PD. Despite the recent advances, the mechanisms by which extracellular protein aggregates internalize into the cells remain poorly understood. Using a simple cell-based model of human neuroblastoma-derived differentiated neurons, we present the cellular internalization of α-Syn PFF to check cellular uptake and recycling kinetics along with the standard endocytic markers Transferrin (Tf) marking clathrin-mediated endocytosis (CME) and Galectin3 (Gal3) marking clathrin-independent endocytosis (CIE). Specific inhibition of endocytic pathways using chemical inhibitors reveals no significant involvement of CME, CIE and caveolae-mediated endocytosis (CvME). A substantial reduction in cellular uptake was observed after perturbation of actin polymerization and treatment with macropinosomes inhibitor. Our results show that α-Syn PFF mainly internalizes into the SH-SY5Y cells and differentiated neurons via the macropinocytosis pathway. The elucidation of the molecular and cellular mechanism involved in the α-Syn PFF internalization will help improve the understanding of α-synucleinopathies including PD, and further design specific inhibitors for the same.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/26014
Subjects
differentiated neurons | endocytosis | internalization | neuroblastoma | Parkinson's disease | preformed-fibrils | SH-SY5Y | α-synuclein
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify