Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Asymptotic Behaviour Of The Least Energy Solutions To Fractional Neumann Problems
 
  • Details

Asymptotic Behaviour Of The Least Energy Solutions To Fractional Neumann Problems

Source
Journal of the Australian Mathematical Society
ISSN
14467887
Date Issued
2025-04-01
Author(s)
Gandal, Somnath
Tyagi, Jagmohan  
DOI
10.1017/S1446788724000107
Volume
118
Issue
2
Abstract
We study the asymptotic behaviour of the least energy solutions to the following class of nonlocal Neumann problems: 0} \text{in } \Omega, \\ { \mathcal{N}_{s}u=0 } \text{in } \mathbb{R}^{n}\setminus \overline{\Omega}, \end{cases} \end{align*} $$ ]]> where is a bounded domain of class, <![CDATA[ $1<p\max \{1, 2s \}, 00$ ]] and is the nonlocal Neumann derivative. We show that for small the least energy solutions of the above problem achieve an-bound independent of Using this together with suitable-estimates on we show that the least energy solution achieves a maximum on the boundary of for d sufficiently small.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/28189
Subjects
asymptotic behaviour | fractional Laplacian | positive solutions | semilinear Neumann problem
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify