Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Task-specific representation learning for web-scale entity disambiguation
 
  • Details

Task-specific representation learning for web-scale entity disambiguation

Source
32nd Aaai Conference on Artificial Intelligence Aaai 2018
Date Issued
2018-01-01
Author(s)
Kar, Rijula
Reddy, Susmija
Bhattacharya, Sourangshu
Dasgupta, Anirban  
Chakrabarti, Soumen
Abstract
Named entity disambiguation (NED) is a central problem in information extraction. The goal is to link entities in a knowledge graph (KG) to their mention spans in unstructured text. Each distinct mention span (like John Smith, Jordan or Apache) represents a multi-class classification task. NED can therefore be modeled as a multitask problem with tens of millions of tasks for realistic KGs. We initiate an investigation into neural representations, network architectures, and training protocols for multitask NED. Specifically, we propose a task-sensitive representation learning framework that learns mention dependent representations, followed by a common classifier. Parameter learning in our framework can be decomposed into solving multiple smaller problems involving overlapping groups of tasks. We prove bounds for excess risk, which provide additional insight into the problem of multi-task representation learning. While remaining practical in terms of training memory and time requirements, our approach outperforms recent strong baselines, on four benchmark data sets.
URI
https://d8.irins.org/handle/IITG2025/23470
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify