Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Joining of Polymer Matrix Composites Through Friction Stir Processes
 
  • Details

Joining of Polymer Matrix Composites Through Friction Stir Processes

Source
Encyclopedia of Materials Composites
Date Issued
2021-01-01
Author(s)
Mahesh, V. P.
Patel, Sooraj
Gumaste, Anurag
Arora, Amit  
DOI
10.1016/B978-0-12-819724-0.00063-X
Volume
3
Abstract
Polymer and polymer matrix composite materials are used in automotive applications owing to the high strength-to-weight ratio. However, the joining of polymer matrix composites is a challenging task due to the lower melting temperature, lower thermal conductivity, and agglomeration of reinforcements during fusion welding of these materials. Friction stir welding, a solid-state welding technology, is a suitable alternative for the welding of polymer matrix composites. The tool design, welding process parameters, and reinforcement content are some of the important factors that affect the material flow and microstructure in the welds. Several innovative modifications to conventional FSW, such as submerged FSW, heat-assisted FSW, friction stir spot welding, and friction riveting, have been suggested for defect-free welding of PMCs. Various weld properties such as tensile strength, hardness, shear bond strength, and impact strength have been studied for the FSW of PMCs. The weld defects have been analyzed and characterized. The numerical simulation of the FSW of PMCs has also been attempted by various researchers.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/26375
Subjects
Dissimilar welding | Friction stir welding | Material flow | Microhardness | Numerical analysis | Polymer matrix composites | Tensile strength | Tool design | Weld properties | Weld zone
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify