Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. On de Rham cohomology of Drinfeld modules of rank 2
 
  • Details

On de Rham cohomology of Drinfeld modules of rank 2

Source
International Journal of Number Theory
ISSN
17930421
Date Issued
2025-08-01
Author(s)
Pandit, Sudip
Saha, Arnab  
DOI
10.1142/S1793042125500733
Volume
21
Issue
7
Abstract
Previously, using the theory of delta characters for Drinfeld modules, one constructed a finite free R-module H(E) with a semilinear operator on it, and hence a canonical z-isocrystal H<inf>δ</inf>(E) was attached to any Drinfeld module E that depended on the invertibility of a differential modular parameter γ. In this paper, we prove that γ is invertible for a Drinfeld module of rank 2. As a consequence, if E does not admit a lift of Frobenius and K is the fraction field of the ring of definition, we show that H(E)∅K is isomorphic to H<inf>dR</inf>(E) ∅ K and the isomorphism preserve the canonical Hodge filtration. On the other hand, if E admits a lift of Frobenius, then H(E)∅K is isomorphic to the subobject Lie(E)<sup>∗</sup> ∅ K of H<inf>dR</inf>(E) ∅ K. The above result can be viewed as a character theoretic interpretation of de Rham cohomology.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/28044
Subjects
Drinfeld module | jet spaces | Witt vectors | δ-character
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify