Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. A Novel Approach Towards Early Detection of Alzheimer’s Disease Using Deep Learning on Magnetic Resonance Images
 
  • Details

A Novel Approach Towards Early Detection of Alzheimer’s Disease Using Deep Learning on Magnetic Resonance Images

Source
Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics
ISSN
03029743
Date Issued
2021-01-01
Author(s)
Yadav, Kushpal Singh
Miyapuram, Krishna Prasad  
DOI
10.1007/978-3-030-86993-9_43
Volume
12960 LNAI
Abstract
Magnetic Resonance Imaging (MRI) is used extensively for the diagnosis of Alzheimer’s Disease (AD). Early detection of AD can help people with early intervention and alleviate the progression of disease symptoms. Previous studies have applied deep learning methods for computer-aided diagnosis of AD. In this present study, an efficient architecture has been proposed, composed of a 2D Convolutional neural network with batch normalization for the classification of AD using MRI images. The proposed model was created using 11 layers, which was obtained by experimenting with different combinations of batch normalization and activation functions. All the experiments are performed using the Alzheimer Disease Neuroimaging Initiative (ADNI) data. The novelty of our approach was that different slices of the brain, such as axial, coronal, and sagittal, were used to classify brain slices into three classes: Cognitively Normal (NC), Mild Cognitive Impairment (MCI), and AD. The proposed model achieved a sensitivity (SEN) of 99.73% for NC, 99.79% for MCI, and 99.96% for AD, a specificity (SPE) of 99.80% for NC, 99.90% for MCI, and 99.74% for AD, and accuracy of 99.82%. The contribution of our proposed method’s classification accuracy was better than that of the recent state-of-the-art methods.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/25588
Subjects
2D CNN | ADNI | Alzheimer’s disease | Batch normalization | Deep learning | MRI
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify