Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Layered Symbolic Security Analysis in DY⋆
 
  • Details

Layered Symbolic Security Analysis in DY⋆

Source
Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics
ISSN
03029743
Date Issued
2024-01-01
Author(s)
Bhargavan, Karthikeyan
Bichhawat, Abhishek  
Hosseyni, Pedram
Küsters, Ralf
Pruiksma, Klaas
Schmitz, Guido
Waldmann, Clara
Würtele, Tim
DOI
10.1007/978-3-031-51479-1_1
Volume
14346 LNCS
Abstract
While cryptographic protocols are often analyzed in isolation, they are typically deployed within a stack of protocols, where each layer relies on the security guarantees provided by the protocol layer below it, and in turn provides its own security functionality to the layer above. Formally analyzing the whole stack in one go is infeasible even for semi-automated verification tools, and impossible for pen-and-paper proofs. The DY<sup>⋆</sup> protocol verification framework offers a modular and scalable technique that can reason about large protocols, specified as a set of F<sup>⋆</sup> modules. However, it does not support the compositional verification of layered protocols since it treats the global security invariants monolithically. In this paper, we extend DY<sup>⋆</sup> with a new methodology that allows analysts to modularly analyze each layer in a way that compose to provide security for a protocol stack. Importantly, our technique allows a layer to be replaced by another implementation, without affecting the proofs of other layers. We demonstrate this methodology on two case studies. We also present a verified library of generic authenticated and confidential communication patterns that can be used in future protocol analyses and is of independent interest.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/29248
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify