Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Internal feed preheating necessary for energy-efficient modular multi-effect membrane distillation
 
  • Details

Internal feed preheating necessary for energy-efficient modular multi-effect membrane distillation

Source
Desalination
ISSN
00119164
Date Issued
2023-10-15
Author(s)
Srivastava, Rishabh
Jaiswal, Ankush Kumar
Jayakumar, Arjun
Swaminathan, Jaichander
DOI
10.1016/j.desal.2023.116753
Volume
564
Abstract
Multi-effect membrane distillation (MEMD) systems achieve a high product recovery ratio by effectively utilizing the heat of condensation for further vaporization within the module. In this study, a novel internal feed-preheating design for improving the energy efficiency of modular MEMD systems is proposed and evaluated using a 2D CFD model. Custom user-defined functions are implemented to account for water vapor and associated energy transport across the membrane in an MEMD design with serpentine flow across various effects. Preheat channels embedded into the condensation plates help increase the temperature of feed entering the first effect by ∼25 K, close to heater plate temperature. As a result, high-grade external heat input is not used for sensible heating, instead being utilized towards evaporation and pure water production, resulting in ∼32 % improvement in energy efficiency. However, the added thermal resistance of the preheat channels results in lower average flux and hence recovery, which can be ameliorated by increasing the effective conductivity of the preheat channels. Increasing the thermal conductivity of preheat channels results in ∼23.5 % rise in recovery ratio. Such preheat designs are necessary to reap energy efficiency improvements by increasing the total number of effects in multi-effect vacuum and gap MD systems.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/26603
Subjects
CFD | Energy efficiency | Internal feed preheating | Membrane distillation | Multi-effect | Permeate gap
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify