Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Electrical Engineering
  4. EE Publications
  5. Zero shot hashing
 
  • Details

Zero shot hashing

Date Issued
2016-10-01
Author(s)
Raman, Shanmuganathan
Pachori, Shubham
Abstract
This paper provides a framework to hash images containing instances of unknown object classes. In many object recognition problems, we might have access to huge amount of data. It may so happen that even this huge data doesn't cover the objects belonging to classes that we see in our day to day life. Zero shot learning exploits auxiliary information (also called as signatures) in order to predict the labels corresponding to unknown classes. In this work, we attempt to generate the hash codes for images belonging to unseen classes, information of which is available only through the textual corpus. We formulate this as an unsupervised hashing formulation as the exact labels are not available for the instances of unseen classes. We show that the proposed solution is able to generate hash codes which can predict labels corresponding to unseen classes with appreciably good precision.
URI
https://d8.irins.org/handle/IITG2025/19915
Subjects
Computer Vision
Pattern Recognition
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify