Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. PVC-RAM:Process Variation Aware Charge Domain In-Memory Computing 6T-SRAM for DNNs
 
  • Details

PVC-RAM:Process Variation Aware Charge Domain In-Memory Computing 6T-SRAM for DNNs

Source
Proceedings Design Automation Conference
ISSN
0738100X
Date Issued
2023-01-01
Author(s)
Shubham, Sai
Pandit, Shubham
Prasad, Kailash
Mekie, Joycee  
DOI
10.1109/DAC56929.2023.10247893
Volume
2023-July
Abstract
This work introduces PVC-RAM, a process variation aware in-memory computing (IMC) static random-access memory (SRAM) macro designed for efficient convolutional neural network (CNN) inference. PVC-RAM is a charge-domain based compact IMC and is the first fully analog IMC for 4b-weights/4b-inputs MAC operation for deep neural networks in 6T-SRAM to the best of our knowledge. Further, PVC-RAM fully computes 4-bit MAC in the analog domain and requires fewer invocations of the ADCs. Implemented in 28nm technology, PVC-RAM achieves a bitwise throughput of 6964.48 TOPS, which is 1.5× higher than the SOTA, and a bitwise energy efficiency of 75.12 TOPS/W, which is 1.3× higher than the SOTA.
Unpaywall
URI
https://d8.irins.org/handle/IITG2025/26941
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify