Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Civil Engineering
  4. CE Publications
  5. Connecting continuum poroelasticity with discrete synthetic vascular trees for modeling liver tissue
 
  • Details

Connecting continuum poroelasticity with discrete synthetic vascular trees for modeling liver tissue

Source
arXiv
Date Issued
2023-06-01
Author(s)
Ebrahem, Adnan
Jessen, Etienne
Eikelder, Marco F.P. ten
Gangwar, Tarun
Mika, Micha?
Schillinger, Dominik
Abstract
Computational simulations have the potential to assist in liver resection surgeries by facilitating surgical planning, optimizing resection strategies, and predicting postoperative outcomes. The modeling of liver tissue across multiple length scales constitutes a significant challenge, primarily due to the multiphysics coupling of mechanical response and perfusion within the complex multiscale vascularization of the organ. In this paper, we present a modeling framework that connects continuum poroelasticity and discrete vascular tree structures to model liver tissue across disparate levels of the perfusion hierarchy. The connection is achieved through a series of modeling decisions, which include source terms in the pressure equation to model inflow from the supplying tree, pressure boundary conditions to model outflow into the draining tree, and contact conditions to model surrounding tissue. We investigate the numerical behaviour of our framework and apply it to a patient-specific full-scale liver problem that demonstrates its potential to help assess surgical liver resection procedures.
URI
http://arxiv.org/abs/2306.07412
https://d8.irins.org/handle/IITG2025/19715
Subjects
Surgical planning
Multiphysics coupling
Poroelasticity
Surgical liver resection
Liver problem
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify