Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. IIT Gandhinagar
  3. Electrical Engineering
  4. EE Publications
  5. Band-to-band tunneling based ultra-energy efficient silicon neuron
 
  • Details

Band-to-band tunneling based ultra-energy efficient silicon neuron

Source
arXiv
Date Issued
2019-02-01
Author(s)
Chavan, Tanmay
Dutta, Sangya
Mohapatra, Nihar Ranjan
Ganguly, Udayan
Abstract
The human brain comprises about a hundred billion neurons connected through quadrillion synapses. Spiking Neural Networks (SNNs) take inspiration from the brain to model complex cognitive and learning tasks. Neuromorphic engineering implements SNNs in hardware, aspiring to mimic the brain at scale (i.e., 100 billion neurons) with biological area and energy efficiency. The design of ultra-energy efficient and compact neurons is essential for the large-scale implementation of SNNs in hardware. In this work, we have experimentally demonstrated a Partially Depleted (PD) Silicon-On-Insulator (SOI) MOSFET based Leaky-Integrate & Fire (LIF) neuron where energy-and area-efficiency is enabled by two elements of design - first tunneling based operation and second compact sub-threshold SOI control circuit design. Band-to-Band Tunneling (BTBT) induced hole storage in the body is used for the "Integrate" function of the neuron. A compact control circuit "Fires" a spike when the body potential exceeds the firing threshold. The neuron then "Resets" by removing the stored holes from the body contact of the device. Additionally, the control circuit provides "Leakiness" in the neuron which is an essential property of biological neurons. The proposed neuron provides 10x higher area efficiency compared to CMOS design with equivalent energy/spike. Alternatively, it has 10^4x higher energy efficiency at area-equivalent neuron technologies. Biologically comparable energy- and area-efficiency along with CMOS compatibility make the proposed device attractive for large-scale hardware implementation of SNNs.
URI
http://arxiv.org/abs/1902.09726
https://d8.irins.org/handle/IITG2025/19930
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify