Repository logo
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. A force myography-based system for gait event detection in overground and ramp walking
 
  • Details

A force myography-based system for gait event detection in overground and ramp walking

Source
IEEE Transactions on Instrumentation and Measurement
ISSN
00189456
Date Issued
2018-10-01
Author(s)
Godiyal, Anoop Kant
Verma, Hemant Kumar
Khanna, Nitin
Joshi, Deepak
DOI
10.1109/TIM.2018.2816799
Volume
67
Issue
10
Abstract
In this paper, we present a novel method to determine the heel strike (HS) and toe-off (TO) during overground (OG) and ramp walking, including the transition. The method utilizes force myography (FMG) signals from thighs while subjects walked on OG and ramp. Five adult male subjects wore a wireless FMG data acquisition system, developed in-house using force resistive sensors and electronic components. A heuristic approach for subject-dependent and terrain-independent model was developed to determine HS and TO in a given gait cycle in steady state and transition. The average error in HS determination was 9.66 ± 8.29, 9.38 ± 9.35, and 13.94 ± 18.95 ms, while TO was determined with an average error of 16.99 ± 18.12, 13.35 ± 15.10, and 17.29 ± 21.92 ms for OG, ramp, and transition, respectively. The proposed system is less expensive, simple to develop, and friendly to wear. The reported errors are comparable to previously reported errors using pressure sensitive insole, gyroscope, accelerometers, and electromyography, which are much complex and expensive in comparison to proposed FMG-based system. Although the tests were conducted on healthy subjects, the system promises to be generalizable to amputee and other pathological gaits also. While the tests were conducted on young adults at self-selected speeds, the system also promises to be generalizable for a wide range of walking speeds across the population.
Unpaywall
URI
http://repository.iitgn.ac.in/handle/IITG2025/22749
Subjects
Force myography (FMG) | gait cycle | heel strike (HS) | locomotion | toe-off (TO) | transitions
IITGN Knowledge Repository Developed and Managed by Library

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Privacy policy
  • End User Agreement
  • Send Feedback
Repository logo COAR Notify